歡迎光臨源葉生物,登錄 | 注冊 |
當前位置: 首頁 > 生化試劑 > 植物提取物 > 兒茶素(類)

瀏覽歷史

S18163

兒茶素(類)

源葉 BR,90%
  • 英文名:
  • Catechins
  • 別名:
  • 兒茶素
  • CAS號:
  • 989-51-5
  • 分子式:
  • C22H18O11
  • 分子量:
  • 458.37
  • MDL:
  • MFCD00150865
品牌貨號產(chǎn)品規(guī)格價格(RMB) 庫存(上海) 北京 武漢 南京 數(shù)量計量單位 加入購物車...
源葉 S18163-1g BR,90% ¥42.00元 7 2 - 2 EA 加入購物車
源葉 S18163-5g BR,90% ¥120.00元 6 2 2 2 EA 加入購物車
源葉 S18163-25g BR,90% ¥540.00元 2 2 - - EA 加入購物車
源葉 S18163-100g BR,90% ¥1700.00元 預計交期:2-3天 - - - EA 加入購物車
大包裝詢價

提交您的電話號碼并同意《個人信息授權與保護申明》,到貨后將短信提示。
提交

產(chǎn)品介紹

參考文獻(77篇)

質檢證書(COA)

摩爾濃度計算器

相關產(chǎn)品

  • 介紹:

     (-)-Epigallocatechin Gallate sulfate (EGCG) 是綠茶中的一種主要多酚,可抑制細胞增殖并誘導細胞凋亡。 (-)-Epigallocatechin Gallate sulfate 可抑制谷氨酸脫氫酶 1/2 (GDH1/2, GLUD1/2) 的活性。(-)-Epigallocatechin Gallate sulfate 對結直腸癌、髓性白血病、甲狀腺癌等多種癌癥具有有效的抗癌、抗氧化和抗炎特性。

  • 熔點: 212℃
  • 溶解性: DMSO  :  ≥  30  mg/mL  (65.45  mM)

    H2O  :  20  mg/mL  (43.63  mM;  Need  ultrasonic)
  • 儲存條件: 2-8℃,避光
  • 用途: An inhibitor of Bcl-2 and NOS2
  • 注意:部分產(chǎn)品我司僅能提供部分信息,我司不保證所提供信息的權威性,僅供客戶參考交流研究之用。
  • 69. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
  • 68. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
  • 67. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017.
  • 66. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039
  • 65. Xiang, X., Xiang, Y., Jin, S., Wang, Z., Xu, Y., Su, C., Shi, Q., Chen, C., Yu, Q. and Song, C. (2020), The hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced diabetic mice and their active components characterized by
  • 64. Yu, Penghui, et al. "Distinct variation in taste quality of Congou black tea during a single spring season." Food science & nutrition 8.4 (2020): 1848-1856.https://doi.org/10.1002/fsn3.1467
  • 63. Pei Pu, Xin Zheng, Linna Jiao, Lang Chen, Han Yang, Yonghong Zhang, Guizhao Liang, Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study, Food Chemistry, Volume 339, 2021, 128106
  • 62. Liu, Shuyuan, et al. "In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea."?BMC complementary and alternative medicine?16.1 (2016): 1-8.
  • 61. Liao, Yinyin, et al. "Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves." Journal of agricultural and food chemistry 67.24 (2019): 6716-6724.https://doi.org/10.1021/acs.j
  • 60. Hua, Jinjie, et al. "Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation."?LWT?139 (2021): 110291.https://doi.org/10.1016/j.lwt.2020.110291
  • 59. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039
  • 58. Ge, Zhenzhen, et al. "Comparison of the inhibition on cellular 22-NBD-cholesterol accumulation and transportation of monomeric catechins and their corresponding A-type dimers in Caco-2 cell monolayers." Journal of Functional Foods 27 (2016): 343-351.https:
  • 57. Zhang, Ying, et al. "Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II." Fitoterapia 92 (2014): 61-71.https://doi.org/10.1016/j.fitote.2013.10.001
  • 56. Chen, Weijun, et al. "Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity." Journal of food science 84.1 (2019): 111-120.https://doi.org/10.1111/1750-3841.14405
  • 55. Huang, Haojia, et al. "Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro." Experimental and therapeutic medicine 9.1 (2015): 213-218. https://doi.org/10.3892/etm.2014.2057
  • 54. Jin, Pan, et al. "Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study." Cell & Tissue Research 356.2 (2014).
  • 53. Zhu, Tian-Tian, et al. "Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion." European journal of pharmacology 809 (2017): 42-51.https://doi.org/10.1016/j.ejphar.2017.0
  • 52. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418
  • 51. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418
  • 50. Zou, Mingming, et al. "Evaluation of antimicrobial and antibiofilm properties of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves against Staphylococcus epidermidis." Food science & nutrition 8.1 (2020): 139-149.https://doi.org/
  • 49. Jia, Longgang, et al. "General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein." ACS Applied Materials & Interfaces 12.28 (2020): 31182-31194.https://doi.org/10.1021/acsami.
  • 48. Chang, Yifan, et al. "Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate." International Journal of Biological Macromolecules 159 (2020): 373-382.https://doi.org/10
  • 47. Zhang, Xing, Hui He, and Tao Hou. "Molecular mechanisms of selenium-biofortified soybean protein and polyphenol conjugates in protecting mouse skin damaged by UV-B." Food & function 11.4 (2020): 3563-3573.DOI: 10.1016/j.foodchem.2021.129888
  • 46. Jin, P., Li, M., Xu, G., Zhang, K., Zheng, L., & Zhao, J. (2015). Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Corrigendum in /10.3892/etm.2021.9725. Experi
  • 45. Chuang Zhu, Yan Xu, Zeng-Hui Liu, Xiao-Chun Wan, Da-Xiang Li, Ling-Ling Tai, The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice, Biomedicine & Pharmacotherapy, Volume 97, 2018, Pages 168-173, ISSN 0753-3322, https://do
  • 44. Yang, Rui, et al. "Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro." RSC advances 6.42 (2016): 35267-35279.https://doi.org/10.1039/C6RA04058F
  • 43. Chen, Yinxia, and Meihu Ma. "Foam and conformational changes of egg white as affected by ultrasonic pretreatment and phenolic binding at neutral pH." Food Hydrocolloids 102 (2020): 105568.https://doi.org/10.1016/j.foodhyd.2019.105568
  • 42. Li, Wenfeng, Kun Zhang, and Qiang Zhao. "Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice." International journal of food sciences and nutrition 70.3 (2019): 311-322.https://doi.org/10.1080
  • 41. 張恒,鄭俏然,何靖柳,韋婷,劉翔,章斌.藏茶玫瑰烏梅無糖復合飲料研制及功能性成分分析與抗氧化研究[J].食品科技,2021,46(01):46-53+61.
  • 40. 姜麗娜,李紀元,范正琪,童冉,莫潤宏,李志輝,蔣昌杰.金花茶組植物花朵內多酚組分含量分析[J].林業(yè)科學研究,2020,33(04):117-126.
  • 39. 劉行海,徐策,買文麗,鄭倩,劉華,劉紅.表沒食子兒茶素沒食子酸酯對2型糖尿病大鼠認知功能的影響及其機制研究[J].川北醫(yī)學院學報,2021,36(01):14-16.
  • 38. 薛慶,童梁成,楊智偉,汪劍齡,趙磊,周勝,彭賽,李穎.表沒食子兒茶素沒食子酸酯可減輕大鼠骨骼肌缺血再灌注損傷[J].中國組織工程研究,2021,25(26):4145-4149.
  • 37. 夏興莉,廖界仁,任太鈺,馬媛春,王玉花,房婉萍,朱旭君.低溫處理對茶樹葉片中γ-氨基丁酸和其他活性成分含量的影響[J].植物資源與環(huán)境學報,2020,29(05):75-77.
  • 36. 喬小燕,操君喜,車勁,陳棟,劉仲華.基于滋味和香氣成分結合化學計量法鑒別不同貯藏年份的康磚茶[J].現(xiàn)代食品科技,2020,36(09):260-269+299.
  • 35. 馬麗娜. 基于QSPR和分子動力學模擬的中藥成分腸吸收預測方法研究[D].北京中醫(yī)藥大學,2020.
  • 34. 王瑋, 張紀偉, 趙一帆,等. 瀾滄江流域部分茶區(qū)古茶樹資源生化成分多樣性的分析[J]. 分子植物育種, 2020(2).
  • 33. 黃華林, 李波, 陳海強,等. 不同萎凋時間英紅九號和黃化英紅九號紅茶品質比較[J]. 山西農(nóng)業(yè)科學, 2019, 047(010):1742-1745.
  • 32. 喬小燕, 陳維, 馬成英,等. 不同倉儲地康磚茶生化成分比較分析[J]. 廣東茶業(yè), 2019(5):7-10.
  • 31. 穆青 陳亞淑 謝筆鈞 楊季芳 陳吉剛 孫智達.北極海洋紅球菌B7740(Rhodococcus sp.)產(chǎn)類胡蘿卜素和類異戊二烯醌的抗氧化、抗增殖活性[J].食品科學 2018 39(11):159-164.
  • 30. 萎凋方式對黃化英紅九號紅茶品質的影響
  • 29. 喬小燕, 黃國資, 王秋霜,等. 連續(xù)化生產(chǎn)線加工過程中客家炒青綠茶主要品質成分的化[J]. 廣東農(nóng)業(yè)科學, 2014, 041(024):91-94.
  • 28. 喬小燕, 黃華林, 李波,等. 廣東客家茶樹種質資源兒茶素特性分析[J]. 江西農(nóng)業(yè)學報, 2019, v.31(01):30-33.
  • 27. 杜歡歡, 蔡艷妮, 江海,等. 超高效液相串聯(lián)質譜同時測定茶葉中的8種有效物質[J]. 陜西理工大學學報(自然科學版), 2017(33):74-80.
  • 26. 蔡爽, 阮成江, 杜維, et al. 沙棘葉片,果肉和種子中黃酮類成分的差異[J]. 植物資源與環(huán)境學報, 2019(4).
  • 25. 歐惠算,張靈枝,王維生.阿姆斯特丹散囊菌對六堡茶品質成分的影響研究[J].中國茶葉加工,2019(02):45-50.
  • 24. 李波, 黃華林, 陳欣,等. 不同季節(jié)黃化英紅九號紅茶品質比較分析[J]. 山東農(nóng)業(yè)科學, 2019.
  • 23. 喬小燕, 李崇興, 姜曉輝,等. 不同等級CTC紅碎茶生化成分分析[J]. 食品工業(yè)科技, 2018, 039(010):83-89.
  • 22. 魏琳,盧鳳美,邵宛芳,袁唯.酸茶發(fā)酵過程中感官品質及主要成分變化分析[J].食品研究與開發(fā),2019,40(14):69-74.
  • 21. 周曉晴, 胡立文, 羅琦,等. 茶葉籽油中茶多酚和兒茶素的測定[J]. 食品工業(yè)科技, 2019.
  • 20. 梅雙, 喬小燕, 陳維,等. 半連續(xù)化生產(chǎn)線和傳統(tǒng)單機加工客家炒青綠茶主要品質成分比較分析[J]. 廣東農(nóng)業(yè)科學, 2019(11).
  • 19. 喬小燕, 黃秀新, 黃國資,等. "二炒"溫度對傳統(tǒng)客家炒青綠茶品質特征的影響[J]. 廣東農(nóng)業(yè)科學, 2015, 042(001):96-99.
  • 18. 王婷婷 蔡自建 蒲婉欣 等. 四川綠茶感官品質與主要滋味貢獻成分分析[J]. 食品研究與開發(fā) 2018 39(24):162-167.
  • 17. 喬小燕, 李波, 何梓卿,等. 黃化英紅九號紅茶體外抗氧化活性分析[J]. 農(nóng)產(chǎn)品質量與安全, 2018, 000(005):85-90.
  • 16. 胡立文, 周曉晴, 張彬,等. 茶葉籽油中兒茶素類和咖啡因含量測定[J]. 南昌大學學報(理科版), 2018, 42(002):134-138,146.
  • 15. 郭穎, 黃峻榕, 陳琦,等. 茶葉中兒茶素類測定方法的優(yōu)化[J]. 食品科學, 2016, 37(06):137-141.
  • 14. 黃貝, 李龍寶, 吳信潔,等. 油茶花青素還原酶基因克隆和體外功能研究[J]. 茶業(yè)通報, 2018, 040(002):71-76.
  • 13. 阮鳴. HPLC法同時測定六安瓜片中七種活性成分的含量[J]. 南京曉莊學院學報 2016(6):37-42.
  • 12. 王舒叆,王子元,張敏.不同抑菌劑對青稞鮮濕面中蠟樣芽孢桿菌的抑制作用[J].食品科學,2020,41(13):206-211.
  • 11. 張?zhí)鞎? 王祥榮. 真絲織物上茶多酚的高效液相色譜法檢測[J]. 現(xiàn)代絲綢科學與技術, 2020(2):4-7.
  • 10. 陳紅霞, 李灝, 呂杰,等. 普洱茶渥堆發(fā)酵中活性成分測定及其相關性分析[J]. 北京化工大學學報(自然科學版), 2013, 40(005):84-87.
  • 9. 黃淵 岳世陽 熊善柏 等. 2種天然抗氧化劑與鰱魚肌球蛋白的相互作用[J]. 食品科學 2019 40(04):24-30.
  • 8. 陳斌輝, 呂圭源, 金偉鋒,等. 基于正交設計和BP神經(jīng)網(wǎng)絡-遺傳算法多指標綜合優(yōu)化茶葉提取工藝[J]. 中國現(xiàn)代應用藥學, 2019, 036(010):1223-1228.
  • 7. 孫陶利 周芫宇 黎綾. EGCG-β-LG納米粒的制備及體外穩(wěn)定性研究[J]. 生物化工 2020 006(001):35-37 54.
  • 6. 何帥, 王明友, 趙季軍,等. 表沒食子兒茶素沒食子酸酯預防高脂飲食誘導的大鼠肥胖[J]. 西部醫(yī)學, 2020, 032(004):496-499,504.
  • 5. 孔敏, 周芳, 黨秀靜,等. 脊髓Toll樣受體4在慢性瘙癢中的作用研究[J]. 重慶醫(yī)學, 2013, 42(9):961-963.
  • 4. 李書靈 陸玨秀 余艾虹 等. 兒茶素對家兔離體小腸平滑肌收縮功能和機制的實驗研究[J]. 世界最新醫(yī)學信息文摘 2018 v.18(28):168-169.
  • 3. 蒲首丞. HPLC-DAD測定大茶樹和小茶樹的西湖龍井茶中EGCG的含量[J]. 安徽農(nóng)業(yè)科學 v.42;No.445(12):3714-3715.
  • 2. 北拉 蒲首丞 孫梅好. HPLC-DAD測定不同時期安吉白茶中EGCG的含量[J]. 中國農(nóng)業(yè)信息 2016(6):57-57.
  • 1. 鈕婧歆 郭晶 郭青 等. EGCG對富亮氨酸重復激酶2活性的影響及其作用機制[J]. 江蘇大學學報(醫(yī)學版) 2018 v.28;No.143(05):34-39.
輸入產(chǎn)品批號:

本計算器可幫助您計算出特定溶液中溶質的質量、溶液濃度和體積之間的關系,公式為:


質量 (mg) = 濃度 (mM) x 體積 (mL) x 分子摩爾量 (g/mol)


  • =
    *
    *


源葉所有產(chǎn)品僅用作科學研究,銷售產(chǎn)品行為均適用于我司網(wǎng)上所列通用銷售條款。